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Studying mechanical resonators via radiation pressure offers a
rich avenue for the exploration of quantum mechanical behavior
in a macroscopic regime. However, quantum state preparation
and especially quantum state reconstruction of mechanical oscilla-
tors remains a significant challenge. Here we propose a scheme
to realize quantum state tomography, squeezing, and state purifi-
cation of a mechanical resonator using short optical pulses. The
scheme presented allows observation of mechanical quantum fea-
tures despite preparation from a thermal state and is shown to be
experimentally feasible using optical microcavities. Our framework
thus provides a promisingmeans to explore the quantum nature of
massive mechanical oscillators and can be applied to other systems
such as trapped ions.

optomechanics ∣ quantum measurement ∣ squeezed states

Coherent quantum mechanical phenomena, such as entangle-
ment and superposition, are not apparent in the macroscopic

realm. It is currently held that on large scales quantum mechan-
ical behavior is masked by decoherence (1) or that quantum
mechanical laws may even require modification (2–5). Despite
substantial experimental advances, see for example ref. 6, probing
this regime remains extremely challenging. Recently however, it
has been proposed to utilize the precision and control of quantum
optical fields in order to investigate the quantum nature of
massive mechanical resonators by means of the radiation-pres-
sure interaction (7–13). Quantum state preparation and the
ability to probe the dynamics of mechanical oscillators, the most
rigorous method being quantum state tomography, are essential
for such investigations. These important elements have been
experimentally realized for various quantum systems, e.g., light
(14, 15), trapped ions (16, 17), atomic ensemble spin (18, 19),
and intracavity microwave fields (20). By contrast, an experiment
realizing both quantum state preparation and tomography of
a mechanical resonator is yet to be achieved. Also, schemes
that can probe quantum features without full tomography [e.g.,
(9, 10, 21)] are similarly challenging. In nanoelectromechanics,
cooling of resonator motion and preparation of the ground state
have been observed (22, 23) but quantum state reconstruction
(24) remains outstanding. In cavity optomechanics significant
experimental progress has been made towards quantum state
control over mechanical resonators (11–13), which includes clas-
sical phase-space monitoring (25, 26), laser cooling close to the
ground state (27, 28), and low noise continuous measurement of
mechanically induced phase fluctuations (29–31). Still, quantum
state preparation is technically difficult primarily due to thermal
bath coupling and weak radiation-pressure interaction strength,
and quantum state reconstruction remains little explored. Thus
far, a common theme in proposals for mechanical state recon-
struction is state transfer to and then read-out of an auxillary
quantum system (32–35). This technique is a technically demand-
ing approach and remains a challenge.

In this paper we introduce an optomechanical scheme that
provides direct access to all the mechanical quadratures in order
to obtain full knowledge about the quantum state of mechanical
motion. This quadrature access is achieved by observing the

distribution of phase noise of strong pulses of light at various
times throughout a mechanical period. We show that the same
experimental tools used for quantum state tomography can also
be used for squeezed state preparation and state purification,
which thus provides a complete experimental framework. Our
scheme does not require “cooling via damping” (11–13) and
can be performed within a single mechanical cycle thus signifi-
cantly relaxing the technical requirements to minimize thermal
contributions from the environment.

Using a pulsed interaction that is very short compared to the
period of an oscillator to provide a back-action-evading measure-
ment of position was introduced in the seminal contributions of
Braginsky and coworkers (36, 37), where schemes for sensitive
force detection were developed. In our work, the quantum nature
of a mechanical resonator is itself the central object of inves-
tigation. Here, the pulsed interaction is used to provide an ex-
perimentally feasible means to generate and fully reconstruct
quantum states of mechanical motion. The proposed experimen-
tal setup is shown in Fig. 1. A pulse of duration much less than the
mechanical period is incident upon an optomechanical Fabry-
Pérot cavity which we model as being single sided. Due to the
entanglement generated during the radiation-pressure interac-
tion, the optical phase becomes correlated with the mechanical
position while the optical intensity imparts momentum to the
mechanical oscillator. Time-domain homodyne detection (15) is
then used to determine the phase of the field emerging from the
cavity, and thus to obtain a measurement of the mechanical posi-
tion. For each pulse, the measurement outcome PL is recorded,
which for Gaussian optical states has mean and variance

hPLi ¼ χhX in
Mi; σ2PL

¼ σ2
Pin
L
þ χ2σ2

X in
M
; [1]

respectively. X in
M is the mechanical position quadrature immedi-

ately prior to the interaction and Pin
L describes the input phase of

light. The position measurement strength χ is an important para-
meter in this work as it quantifies the scaling of the mechanical
position information onto the light field. A derivation of Eq. 1
including an optimization of χ by determining the input pulse
envelope to gain the largest cavity enhancement is provided in
the Appendix.

In order to describe and quantify the pulse interaction and
measurement we use the nonunitary operator Υ that determines
the new mechanical state via ρoutM ∝ ΥρinMΥ†. This operator is
mechanical state independent and can be determined from the
probability density of measurement outcomes

PrðPLÞ ¼ TrMðΥ†ΥρinMÞ: [2]

For pure optical input, it takes the form
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Υ ¼ ðπ2σ2
Pin
L
Þ−1

4 exp
�
iΩXM −

ðPL − χXMÞ2
4σ2

Pin
L

�
; [3]

where Ω quantifies the momentum transfer to the mechanics due
to the pulse mean photon number. Υ can be readily understood
by considering its action on a mechanical position wavefunction.
This operator selectively narrows the wavefunction to a width
scaling with χ−2 about a position which depends upon the mea-
surement outcome. Moreover, the quantum non-demolition-like
nature of Υ allows for back-action-evading measurements of XM ,
i.e., the back-action noise imparted by the quantummeasurement
process occurs in the momentum quadrature only*. Other meth-
ods, such as the continuous variational measurement scheme
(38), which has recently been considered for gravitational-wave
detectors (39, 40), also allow for back-action-evading measure-
ments. However, using short pulses offers a technically simpler
route for quantum state tomography and is readily implementa-
ble, as will be discussed below.

In the following, we consider coherent drive i.e., σ2
Pin
L
¼ 1∕2.

We first address the important challenge of how to experimen-
tally determine the motional quantum state of a mechanical
resonator. We then discuss how such a measurement can be used
for quantum state preparation and finally we provide details for
a physical implementation and analyze a thorough list of poten-
tial experimental limitations.

Mechanical Quantum State Tomography
Of vital importance to any experiment aiming to explore quantum
mechanical phenomena is a means to measure coherences and
complementary properties of the quantum system. Such measure-
ment is best achieved by complete quantum state tomography,
which despite being an important quantum optical tool has
received very little attention for mechanical resonators†. Any
measurement made on a single realization of a quantum state
cannot yield sufficient information to characterize that quantum
state. The essence of quantum state tomography is to make mea-
surements of a specific set of observables over an ensemble of
identically prepared realizations. The set is such that the mea-
surement results provide sufficient information for the quantum
state to be uniquely determined. One such method is to measure
the marginals hX je−iθnρeiθnjXi, where n is the number operator,
for all phase-space angles θ, see refs. 14, 15, 42 and e.g., ref. 43.

Our scheme provides a means for precision measurement
of the mechanical quadrature marginals, thus allowing the me-
chanical quantum state to be determined. Specifically, given a
mechanical state ρinM , harmonic evolution of angle θ ¼ ωMt pro-
vides access to all the quadratures of this mechanical quantum
state which can then be measured by a subsequent pulse. Thus,
reconstruction of any mechanical quantum state can be per-
formed. The optical phase distribution Eq. 2, including this
harmonic evolution, becomes

PrðPLÞ ¼
Z

dXMffiffiffi
π

p e−ðPL−χXM Þ2hXM je−iθnρinMeiθnjXMi; [4]

which is a convolution between the mechanical marginal of inter-
est and a kernel that is dependent upon χ and the quantum phase
noise of light. The effect of the convolution is to broaden the
marginals and to smooth any features present.

Let us consider the specific example of a mechanical resonator
in a superposition of two coherent states, i.e., jψδi ∝ jiδi þ j − iδi.
The XM marginal of this mechanical Schrödinger-cat state
contains oscillations on a scale smaller than the ground state.
The convolution scales the amplitude of these oscillations by
expð− 2δ2

χ2þ1
Þ and thus for small χ they become difficult to resolve

in the optical phase noise distribution. Shown in Fig. 2 are
marginals of the mechanical state jψδi and the optical phase
distributions that would be observed according to Eq. 4. Scaling
the phase distribution by using the variable PL∕χ provides an
approximation to the mechanical marginals, which becomes more
accurate with increasing χ and may even show the interference
features in a superposition state. Indeed, the limiting case of in-
finite χ corresponds to a von-Neumann projective measurement
of the mechanical position, such that the distribution obtained
for PL∕χ becomes identical to the mechanical marginals. How-
ever, the mechanical marginals can be recovered even for small
measurement strength χ. This recovery is achieved as follows:
First, by fixing the length of the cavity the optical phase distribu-
tion can be observed without contributions from mechanical
position fluctuations. This rigidity allows measurement of the
convolution kernel for a particular χ (determined by the proper-

A B

Fig. 1. (A) Schematic of the optical setup to achieve measurement based
quantum state engineering and quantum state tomography of a mechanical
resonator. An incident pulse (in) resonantly drives an optomechanical cavity,
where the intracavity field a accumulates phase with the position quadrature
XM of a mechanical oscillator. The field emerges from the cavity (out) and
balanced homodyne detection is used to measure the optical phase with a
local oscillator pulse (LO) shaped to maximize the measurement of the me-
chanical position. (B) Scaled envelopes of the optimal input pulse, its corre-
sponding intracavity field and the optimal local oscillator as computed in the
Appendix.

Fig. 2. The scheme presented here provides an experimentally feasible
means to obtain direct access to the marginals of a quantum state of a me-
chanical resonator. Shown are complementary quadrature marginals of the
mechanical coherent state superposition jψδi ∝ jiδi þ j − iδi, for δ ¼ 1.5 (blue
dashed lines with fill, plotted with XM). The mechanical ground state is
shown for comparison in gray dashed lines. The two population components
are seen for the quadrature angle θ ¼ π∕2 and the quantum interference
fringes for θ ¼ 0. A coherent optical pulse is used to probe the mechanical
state where its phase quadrature becomes the convolution between the
intrinsic phase noise, with variance scaling with χ−2, and the mechanical
marginal (red solid lines, plotted with PL∕χ where χ ¼ 2), see Eq. 4. The con-
volution kernel can be observed by using a fixed length cavity, shown in the
θ ¼ 0 plot (red dashed line with fill, fixed length with XM ¼ −4), which allows
for accurate recovery of the mechanical marginals even for a weak measure-
ment strength χ.

*No mechanical position noise is added as our measurement operator commutes with the
mechanical position. This is because the mechanical evolution can be neglected during
the short optomechanical interaction.

†During the submission process of this manuscript a scheme to perform tomography of the
motional state of a trapped particle using a time-of-flight expansion was proposed (41).
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ties of the mechanical resonator of interest, cavity geometry, and
pulse strength, see Eq. 14). With χ and the kernel known one
can then perform deconvolution to determine the mechanical
marginals. The performance of such a deconvolution is limited
by experimental noise in the calibration of χ and the measure-
ment of PrðPLÞ. However, it is expected that these quantities
can be accurately measured as quantum noise limited detection
is readily achieved.

Mechanical Quantum State Engineering and
Characterization
We now discuss how the measurement affects the mechanical
state. First, we consider Υ acting on a mechanical coherent state
jβi. By casting the exponent of Υ in a normal ordered form, one
can show that the resulting mechanical state, which is conditioned
on measurement outcome PL, is NβΥjβi ¼ SðrÞDðμβÞj0i. Here,
Nβ is a β-dependent normalization, D is the displacement opera-
tor for μβ ¼ ð ffiffiffi

2
p

β þ iΩþ χPLÞ∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðχ2 þ 1Þ

p
, and S is the squeez-

ing operator, which yields the position width 2σ2XM
¼ e−2r ¼

ðχ2 þ 1Þ−1.
In most experimental situations, the initial mechanical state

is in a thermal state ρn̄ ¼ 1
πn̄ ∫ d

2βe−jβj2∕n̄jβihβj, quantified by its
average phonon occupation number n̄. The marginals of the
resulting state after the action of Υ are

hXM je−iθnΥρn̄Υ†eiθnjXMi ∝ exp
�
−
ðXM − hXθ

MiÞ2
2σ2θ

�
; [5]

where

hXθ
Mi ¼ χPL

χ2 þ 1
1þ2n̄

cosðθÞ −Ω sinðθÞ;

σ2θ ¼
1

2

cos2ðθÞ
χ2 þ 1

1þ2n̄

þ 1

2
ðχ2 þ 1þ 2n̄Þ sin2ðθÞ [6]

are the mean and variance of the resulting conditional state,
respectively. For large initial occupation (provided thermal fluc-
tuations are negligible during the short interaction), the resultant
position quadrature of the mechanics has mean hXθ¼0

M i≃ PL∕χ
and width 2σ2θ¼0 ≃ χ−2. Thus, squeezing in the XM quadrature
below the ground state is obtained when χ > 1 and is independent
of the initial thermal occupation of the mechanics. We have thus
shown how the remarkable behavior of quantum measurement
(also used in refs. 18–20, 44–47) can be experimentally applied
to a mechanical resonator for quantum state preparation.

There is currently significant interest in the preparation of
low entropy states of mechanical resonators as a starting point
for quantum experiments, e.g., refs. 22, 23, 27, 28. The two main
methods being pursued in optomechanics (11–13) are “passive
cooling” which requires the stable operation of a (usually cryo-
genically compatible) high-finesse cavity, and “active cooling”
which requires precision measurement and feedback. Closer in
spirit to the latter, our pulsed measurement scheme provides a
third method to realize high-purity states of the mechanical re-
sonator. We quantify the state purity after measurement via an
effective mechanical thermal occupation n̄eff , which we define

through 1þ 2n̄eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4σ2θ¼0σ

2
θ¼π∕2

q
. When acting on an initial

thermal state, the measurement dramatically reduces uncertainty
in the XM quadrature, but leaves the thermal noise in the PM

quadrature unchanged: use of Eq. 6 for n̄ ≫ 1 yields n̄ð1Þeff≃ffiffiffiffiffiffiffiffiffiffiffiffi
n̄∕2χ2

p
. The purity can be further improved by a second pulse,

which is maximized for pulse separation θ ¼ ωMt ¼ π∕2, where
the initial uncertainty in the momentum becomes the uncertainty
in position. Such a sequence of pulses‡ is represented in Fig. 3,
where the resulting state was obtained akin to Eq. 5. The effective
occupation of the final state after two pulses is

n̄ð2Þeff ≃
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

χ4

s
− 1

�
; [7]

which is also independent of initial occupation. For χ > 1, n̄ð2Þeff
is well below unity and therefore this scheme can be used as
an alternative to “cooling via damping” for mechanical state pur-
ification.

Following state preparation, one can use a subsequent “read-
out” pulse after an angle of mechanical free evolution θ to per-
form tomography. During state preparation however, the random
measurement outcomes will result in random mechanical means
Eq. 6. This randomness can be overcome by recording and utiliz-
ing the measurement outcomes. One can achieve unconditional
state preparation with use of appropriate displacement prior to
the read-out pulse. Or, use postselection to analyze states pre-
pared within a certain window. Alternatively, one may com-
pensate during data analysis by appropriately adjusting each
measurement outcome obtained during read-out. We now look
at the latter option and consider a Gaussian mechanical state pre-
pared by a prior pulsed measurement. The position distribution
has variance σ2 to be characterized and has a known mean hX ðpÞ

M i,
which is dependent upon the random measurement outcome.
The read-out pulse will then have the distribution PrðPLÞ ∝
exp½ð−ðPL − χhX ðpÞ

M iÞ2Þ∕ð1þ χ22σ2Þ�. For each read-out pulse,
by taking PLjp ¼ PL − χhX ðpÞ

M i one can obtain the conditional
variance σ2PLjp for all θ to characterize the noise of the prepared
Gaussian state. We note that this concept of compensating for
a random but known mean can also be used to characterize
non-Gaussian states.

Experimental Feasibility
We now provide a route for experimental implementation, dis-
cussing potential limitations and an experimentally feasible para-
meter regime. To ensure that the interaction time be much less
than mechanical time scales the cavity decay rate κ must be much
larger than the mechanical frequency. To this end, we consider
the use of optical microcavities operating at λ ¼ 1;064 nm, length
4λ and finesse of 7,000, which have an amplitude decay rate
κ∕2π ≃ 2.5 GHz. Such short cavity devices incorporating a micro-

Fig. 3. Wigner functions of the mechanical state (above) at different times
(indicated by arrows) during the experimental protocol (below). From left:
Starting with an initial thermal state n̄ ¼ 10, (this is chosen to ensure the fig-
ure dimensions are reasonable,) a pulsed measurement is made with χ ¼ 1.5
and outcome Pð1Þ

L ¼ 4χ obtained, which yields an XM quadrature squeezed
state. The mechanical state evolves into a PM quadrature squeezed state fol-
lowing free harmonic evolution of 1∕4 of a mechanical period prior to a sec-
ond pulse with outcome Pð2Þ

L ¼ −3χ yielding the high-purity mechanical
squeezed state. The effective thermal occupation of the mechanical states
during the protocol is indicated. The final state’s occupation can be reduced
below unity even for large initial occupation, see Eq. 7 of the main text.
Dashed lines indicate the 2σ-widths and the dotted lines show the ground
state (n̄ ¼ 0) for comparative purposes. The displacement Ω is not shown.

‡We note that strong squeezing of an oscillator can also be achieved by using rapid
modifications to the potential at quarter period intervals (48). However, we would like
to emphasize that the squeezing we are discussing here does not arise from a parametric
process, see e.g., ref. 49, rather it is due to the nonunitary action of measurement.
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mechanical element as one of the cavity mirrors have previously
been fabricated for tunable optical filters, vertical-cavity surface-
emitting lasers and amplifiers (see for example ref. 50), but are
yet to be considered for quantum optomechanical applications.
Typically, these devices employ plane-parallel geometries, which
places a severe constraint on the minimum lateral dimensions of
the suspended mirror structure in order to minimize diffraction
losses (51). Geometries using curved mirrors are required to re-
duce diffraction losses for the practical realization of high-finesse
cavities. Presently, all realizations use a curved suspended mirror,
see e.g., refs. 52, 53. However, in order to allow for enhanced
freedom in the construction of the mechanical resonator, parti-
cularly with respect to the development of ultra-low loss mechan-
ical devices (54), a flat suspended mirror is desired. In Fig. 4 our
proposed fabrication procedure for such a device is shown. The
small-mode-volume cavity considered here provides the band-
width necessary to accommodate the short optical pulses and
additionally offers a large optomechanical coupling rate. One
technical challenge associated with these microcavities is fabri-
cation with sufficient tolerance to achieve the desired optical re-
sonance (under the assumption of a limited range of working
wavelength), however this can be overcome by incorporating
electrically controlled tunability of the cavity length (50, 52, 53).

For a mechanical resonator with eigenfrequency ωM∕2π ¼
500 kHz and effective mass m ¼ 10 ng, the mechanical ground-
state size is x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ∕mωM

p
≃ 1.8 fm and optomechanical cou-

pling proceeds at g0∕2π ¼ ωcðx0∕
ffiffiffi
2

p
LÞ∕2π ≃ 86 kHz, where ωc

is the mean cavity frequency and L is the mean cavity length. The
primary limitation in measurement strength is the optical inten-
sity that can be homodyned before photodetection begins to sa-
turate. Using pulses of mean photon numberNp ¼ 108, which can
be homodyned, yields Ω≃ 104 for the mean momentum transfer§

and χ ≃ 1.5. For this χ, the action of a single pulse on a large ther-
mal state reduces the mechanical variance to σ2XM

≃ 0.2, i.e., less
than half the width of the ground state. With a second pulse after
mechanical evolution the effective occupation [7] is n̄ð2Þeff ≃ 0.05.

In order to observe mechanical squeezing, i.e., σ2XM
< 1∕2, the

conditional variance must satisfy σ2PL jp < σ2
Pin
L
þ χ2∕2, where addi-

tional noise sources that do not affect the mechanical state, e.g.,
detector noise, can be subsumed into σ2

Pin
L
. It is therefore neces-

sary to have an accurate experimental calibration of χ to quantify
the mechanical width. (Similarly, Ω must also be accurately
known to determine the conditional mean, see Eq. 6). This cali-
bration can be performed in the laboratory as follows: For a fixed
length cavity and a given pulse intensity, the length of the cavity is
adjusted by a known amount (by a calibrated piezo for example)
and the proportionality between the homodyne measurement
outcomes and the cavity length is determined. The pulses are
then applied to a mechanical resonator and χ is determined with
knowledge of x0 of the resonator. With χ known Ω can then also
be measured by observing the displacement of the mechanical
state after one-quarter of a period.

Finally we discuss practical limitations. Firstly, finite mechan-
ical evolution during the interaction decreases the back-action-
evading nature of the measurement, which is described in the
Appendix. Such evolution is not expected to be a severe limitation
in the proposed implementation considered here as ωM∕κ ≃
10−4. Secondly, the optical measurement efficiency η, affected
by optical loss, inefficient detection, and mode mismatch, yields
a reduced measurement strength χ →

ffiffiffi
η

p
χ. And thirdly, in many

situations coupling to other mechanical vibrational modes is
expected. This coupling contributes to the measurement out-

comes and yields a spurious broadening of the tomographic
results for the mode of interest. In practice however, one can
minimize these contributions by engineering mechanical devices
with high effective masses for the undesired modes and tailoring
the intensity profile of the optical spot to have good overlap with
a particular vibrational profile (55).

Coupling to a Thermal Bath
For our tomography scheme the mechanical quantum state must
not be significantly perturbed during the time scale ω−1

M . To
estimate the effect of the thermal bath following state prepara-
tion we consider weak and linear coupling to a Markovian bath of
harmonic oscillators. For this model, assuming no initial correla-
tions between the mechanics and the bath, the rethermalization
scales with n̄γM , where γM is the mechanical damping rate. It
follows that an initially squeezed variance ðχ > 1Þ will increase
to 1∕2 on a time scale

τ ¼ Q
n̄ωM

1

2

�
1 −

1

χ2

�
: [8]

A

B

C

D

E

F

G

H

Fig. 4. Our proposed design and fabrication procedure for high-finesse op-
tomechanical microcavities: Using microcavities provides optomechanical
coupling rates many orders of magnitude larger than current millimeter
or centimeter length scale implementations of optomechanical Fabry-Pérot
cavities and can provide sufficient radiation-pressure interaction to resolve
the small scale quantum properties of the mechanical resonator. (A) Cross-
sectional view with a quarter of the device removed. Uppermost (colored
green) is the mechanical resonator supported by auxiliary beams as was con-
sidered in ref. 54. The optical field is injected into the device from below
through a transparent handle (colored blue) and the curved rigid input mir-
ror (colored pink) and then resonates in the vacuum-gap between this and
the mechanical device before being retroreflected. The design is a layered
structure, fabricated in the following steps: (B) The base consists of a
high-reflectivity distributed Bragg reflector (DBR) and an etch stop layer de-
posited on a suitable handle substrate. (C) First, a sacrificial film is deposited
atop the DBR. (D) Next, a microlens pattern is transferred into the sacrificial
layer through a reflow and reactive ion etching process. The radius of cur-
vature of this structure is designed to match the phase front of the optical
mode to minimize diffraction loss. (E) Following the microlens fabrication
process a high reflectivity dielectric DBR is deposited over the sample surface.
(F) The structure is then flipped and bonded to a transparent handle using a
suitable low-absorption adhesive (e.g., spin on glass or UV-curable epoxy). (G)
After mounting, the original growth substrate and etch stop are removed via
chemo-mechanical etching. (H) Finally, the mechanical resonator is patterned
and subsequently released via selective removal of the underlying sacrificial
film. We remark that these integrated structures provide a platform for
“on-chip” hybridization with other quantum systems.

§This momentum is comparable to the width of a thermal state, i.e., Ω∕
ffiffiffī
n

p
< 10 for room

temperature. Thus the mechanical motion remains harmonic.
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Thus, for the parameters above and mechanical quality
Q ¼ ωM∕γM ≃ 105 a temperature T ≲ 1 K is required for the
observation of squeezing during one mechanical period.

The state purification protocol, as shown in Fig. 3, is affected
by rethermalization between the two pulsed measurements. This
thermal process increases the effective thermal occupation and
[7] is modified to

n̄ð2Þeff ðTÞ≃
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

χ4
þ πn̄
Qχ2

s
− 1

�
: [9]

For the above system parameters n̄ð2Þeff ðT ¼ 1 KÞ≃ 0.15. Thus,
mechanical state purification by measurement is readily attain-
able even at a modest bath temperature.

Moreover, we note that the position measurements of this
scheme can be used to probe open system dynamics and thus
provide an empirical means to explore decoherence and bath
coupling models (56).

Conclusions
We have described a scheme to overcome the current challenge
of quantum state reconstruction of a mechanical resonator, which
provides a means to explore quantum mechanical phenomena on
a macroscopic scale. Our experimental protocol allows for state
purification, remote preparation of a mechanical squeezed state,
and direct measurements of the mechanical marginals for quan-
tum state reconstruction, thus providing a complete experimental
framework. The experimental feasibility has been analyzed and
we have shown that with the use of optomechanical microcavities
this scheme can be readily implemented. The optomechanical
entanglement generated by the pulsed interaction may also be
a useful resource for quantum information processing. Moreover,
the framework we have introduced can be built upon for further
applications in quantum optomechanics and can be generalized
to other systems, such as nanoelectromechanics and supercon-
ducting resonators, or used with dispersive interaction to study
the motional state of mechanical membranes, trapped ions, or
particles in a cavity.

Appendix
Model. The intracavity optomechanical Hamiltonian in the
rotating frame at the cavity frequency is

H ¼ ℏωMb†b − ℏg0a
†aðbþ b†Þ; [10]

where a (b) is the optical (mechanical) field operator. The cavity
field accumulates phase in proportion to the mechanical position
and is driven by resonant radiation via the equation of motion

da
dt

¼ ig0ðbþ b†Þa − κaþ
ffiffiffiffiffi
2κ

p
ain; [11]

where κ is the cavity decay rate and ain describes the optical
input including drive and vacuum. During a pulsed interaction
of time scale κ−1 ≪ ω−1

M the mechanical position is approximately
constant. This constancy allows decoupling of Eq. 11 from the
corresponding mechanical equation of motion and during the
short interaction we have db∕dt≃ ig0a†a, where we neglect
the mechanical harmonic motion, mechanical damping, and noise
processes. We write ainðtÞ ¼

ffiffiffiffiffiffi
Np

p
αinðtÞ þ ~ainðtÞ, where αinðtÞ is

the slowly varying envelope of the drive amplitude with
∫ dtα2in ¼ 1 and Np is the mean photon number per pulse and si-
milarly a ¼ ffiffiffiffiffiffi

Np
p

αðtÞ þ ~aðtÞ. Neglecting ig0ðbþ b†Þ~a and approx-
imating α as real, Eq. 11 becomes the pair of linear equations:

dα
dt

¼
ffiffiffiffiffi
2κ

p
αin − κα; [12]

d~a
dt

¼ ig0
ffiffiffiffiffiffi
Np

q
ðbþ b†Þαþ

ffiffiffiffiffi
2κ

p
~ain − κ ~a: [13]

After solving for ~aðtÞ, the output field is then found by using the
input-output relation ~aout ¼

ffiffiffiffiffi
2κ

p
~a − ~ain.

The mechanical position and momentum quadratures are
XM ¼ ðbþ b†Þ∕ ffiffiffi

2
p

and PM ¼ iðb† − bÞ∕ ffiffiffi
2

p
, respectively, the

cavity (and its input/output) quadratures are similarly defined
via ~a (~ain∕~aout). The statistics of the optical amplitude quadrature
are unaffected by the interaction, however, the phase quadra-
ture contains the phase dependent upon the mechanical posi-
tion. The output phase quadrature emerging from the cavity is
Pout
L ðtÞ ¼ g0

κ

ffiffiffiffiffiffi
Np

p
φðtÞX in

M þ 2κe−κt∫ t
−∞dt

0eκt0Pin
L ðt0Þ − Pin

L ðtÞ, where
φðtÞ ¼ ð2κÞ32e−κt∫ t

−∞dt
0eκt0αðt0Þ describes the accumulation of

phase, X in
M is the mechanical position prior to the interaction, and

the last two terms are the input phase noise contributions. Pout
L is

measured via homodyne detection, i.e., PL ¼ ffiffiffi
2

p
∫ dtαLOðtÞPout

L ðtÞ.
To maximize the measurement of the mechanical position the lo-
cal oscillator envelope is chosen as αLOðtÞ ¼ NφφðtÞ, where Nφ

ensures normalization. The contribution of X in
M in PL scales with

χ ¼ ffiffiffi
2

p
1
Nφ

g0
κ

ffiffiffiffiffiffi
Np

p
, which quantifies the mechanical position

measurement strength. The mean and variance of PL are given
in Eq. 1 for pure Gaussian optical input and together with Ω
and Eq. 2 are used to determine Υ, as given in Eq. 3. We have
thus arrived, for our physical setting, at an operator which is
known from generalized linear measurement theory (see for
example ref. 57). Also, we note that Eq. 3 is equivalent to
Υ ¼ eiΩXM hPLjeiχXLXM j0i, though the nonunitary process of
cavity filling and decay is not explicit. We also remark that the
construction of Υ can be readily generalized to include non-
Gaussian operations.

Themaximum χ is obtained for the input drive αinðtÞ ¼
ffiffiffi
κ

p
e−κjtj.

This maximization can be seen by noting that N−2
φ ¼ ∫ dtφ2ðtÞ,

which in Fourier space isN−2
φ ∝ ∫ dωðω2 þ κ2Þ−2jαinðωÞj2. Hence,

for such cavity-based measurement schemes, the optimal drive
has Lorentzian spectrum. This drive, αðtÞ obtained from Eq. 12
and the local oscillator are shown in Fig. 1B. The resulting
optimal measurement strength is given by

χ ¼ 2
ffiffiffi
5

p g0
κ

ffiffiffiffiffiffi
Np

q
; [14]

and the mean momentum transfer due to α2 is Ω ¼ 3ffiffi
2

p g0
κ Np.

We note that this optimization of the driving field may also
be applied to cavity-enhanced pulsed measurement of the spin
of an atomic ensemble (18, 19, 58) or the coordinate of a trapped
ion/particle (59–61). Particularly in the latter case, this approach
will broaden the repertoire of measurement techniques available
and may lead to some interesting applications.

Finite Mechanical Evolution During Interaction. In the model used
above we have assumed that the mechanical position remains
constant during the pulsed optomechanical interaction. Including
finite mechanical evolution, the intracavity field dynamics Eq. 13
must be determined simultaneously with the mechanical dy-
namics. In the mechanical rotating frame with the conjugate
quadratures XM;PM these dynamics are solved to first order in
ωM∕κ resulting in the input-output relations:

Pout
M ¼ Pin

M þ ΩþN1χXC1;

Xout
M ¼ X in

M −
ωM

κ
ξ1Ω −

ωM

κ
χN2XC2;

PL ¼ Pin
L þ χðX in

M þ ωM

κ
ξ2P

in
MÞ þ χ

ωM

κ
ξ3Ωþ χ2

ωM

κ
N3XC3;[15]

where PL still represents the measurement outcome, N1;2;3 and
ξ1;2;3 are input drive-dependent dimensionless parameters of or-
der unity, the former normalizing the nonorthogonal amplitude
quadrature temporal modes XC1;2;3. The main effects of the finite
mechanical evolution can be seen in PL. (i) The mechanical quad-
rature measured has been rotated, which in terms of the nonro-
tating quadratures is eXM ≃ XM þ ωM

κ ξ2PM . Such a rotation poses
no principle limitation to our scheme however this must be taken
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into account for the measurement of a particular mechanical
quadrature. (ii) Each pulsed measurement now has a nonzero
mean proportional to Ω. This mean can be experimentally char-
acterized and appropriately subtracted from the outcomes. (iii)
PL now includes a term proportional to the optical amplitude
noise. This term decreases the back-action evading quality of
the measurement and has arisen due to mechanical momentum
noise gained from the optical amplitude quadrature evolving into
position noise. The conditional variance of the rotated mechan-
ical quadrature including these effects, for large initial occupa-
tion, is

σ2~XM
≃ 1

2

�
1

χ2
þ ζ2χ2

�
ωM

κ

�
2
�
; [16]

where ζ is another drive-dependent parameter of order unity.
The two competing terms here give rise to a minimum variance
of ζωM∕κ when χ2 ¼ κ∕ðζωMÞ. Experimentally reasonable values

of χ will lie much below this optimum point, however, as κ ≫ ωM

for the parameters we consider, the broadening due to finite
evolution is small and strong squeezing can be achieved.
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